Q.P. Code: 20ME0303			R20	
	keg. No.			
1	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT (AUTONOMOUS) B.Tech I Year II Semester Supplementary Examinations May-2022 BASIC THERMODYNAMICS (Mechanical Engineering) Time: 3 hours (Answer all Five Units 5 x 12 = 60 Marks) UNIT-I Explain the following	UR Max. M	Marks: 60	
	a Enthalpy	L2	3M	
	b Internal Energy	L2	3M	
	c Specific heat	L2	3M	
	d Thermodynamic cycle	L2	3M	
2	OR What is meant by thermodynamics equilibrium? Explains its types briefly.	L1	12M	
3	State the concept of entropy of gas and availability and unavailability OR	L1	12M	
4	a The air in a system expands from a temperature of 60°C to 300°C at a constant pressure of 2 bars. Calculate the heat transfer, work done and change in internal energy. The mass of the air is 0.6 Kg. Assume Cp=1.02 KJ/KgK and Cv= 0.71 KJ/KgK for air.	L3	8M	
	b State second law of thermodynamics	L1	4M	
5	a Sketch the following processes on P-V and T-S diagrams (i) constant volume (ii) constant pressure (iii) constant temperature (iv) isentropic process	L2	4 M	
	 b In a closed vessel a certain quantity of gas is heated from 200 KN/m² to 500 KN/m². If the volume of the vessel is 5000 litres find the quantity of i) heat transfer ii) change in internal energy iii) work done.cp= 1.005 KJ/kgk and cv =0,715 KJ/kgk 	L3	8M	
	OR			
6	a Derive an expression for work done during isothermal process.	L3	6M	
	b 0.2 kg of air at pressure of 1.1 bars and 15°c is compressed isothermally to a pressure of 5.5 bars. Calculate (i) final volume (ii) heat rejected (iii) change in internal energy. Assume R= 0.292 KJ/KgK.	L3	6M	
7	a An engine working on the Otto cycle is supplied with air at 0.1 MPa ,35°C .the compression ratio is 8.the heat supplied is 2100 kJ/kg .calculate the Maximum pressure and temperature of the cycle ,the cycle efficiency and the mean effective pressure.(for air Cp=1.005kj/kg. k , Cv = 0.717 kJ/kgk, and R=0.287 kJ/kgk).	L3	12 M	

Page 1 of 2

Q.P. Code: 20ME0303

- 8 a Derive an expression for the thermal efficiency of Ericson cycle and draw P-V & L2 6M T-S diagrams.
 - **b** An oil engine working on the dual combustion cycle has a compression ratio 14 and **L3** 6M the explosion ratio obtained from an indicator card is 1.4. If the cut-off occurs at 6 per cent of stroke, find the ideal efficiency. Take γ for air = 1.4.

UNIT-V

9 a Explain with the help of neat diagram about Regenerative Cycle.
b In a regenerative cycle inlet conditions are 40 bar and 400°C. Steam is bled at 10bar in regenerative heating. The exit pressure is 0.8 bar. Neglecting the pump work. Determine the efficiency of the cycle.
Comparison of the cycle.

OR

10 A steam power plant operates on a theoretical reheat cycle. Steam at Boiler at 150 bar, L3 12M 550°C expands through the high pressure turbine. It is reheated at a constant pressure of 40 bar to 550°C and expands through the low pressure turbine to a condenser at 0.1 bar. Draw T-s and h-s diagrams. Find (i) Quality of steam at turbine exhaust (ii) Cycle efficiency (iii) Steam rate in kg/kWh

*** END ***